If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+9y+20=20
We move all terms to the left:
y^2+9y+20-(20)=0
We add all the numbers together, and all the variables
y^2+9y=0
a = 1; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*1}=\frac{-18}{2} =-9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*1}=\frac{0}{2} =0 $
| 2n+1+n=13 | | 3k*2(5k-3)=7 | | 12x=5.70x+150 | | 12x=5.70x=150 | | 24=3x•x-2 | | 8u+2=40 | | 4x+1/3=8/3 | | 50°+(10x-10)°=90° | | 3n+5=6+23 | | 12x=5.70+150 | | 5x2x3-8=13 | | 4(x+-6)+4=6x-4 | | 13x-5=18x+100 | | -17=v/12 | | 2w(4w+3)=3w | | 3a-13+10=0 | | 16+6x=3x+5x | | 20x=4x+180 | | 3(x-7)=5x+7 | | 2x5+24x=14x3 | | 7/2=c/11/7 | | ((3x+89)+(8x+58))=360 | | Y=24.50x+9.50 | | 3x+4x=108 | | ((4x+52)+(8x-10))=90 | | 2^4x-7=16 | | 3d+1=23d-9 | | 5+9v=58 | | ((7x+30)+(9x+42))=104 | | x/2+9=93 | | Xx23=42 | | 5+9v=-58 |